
Chapter 7

Balanced flow

In Chapter 6 we derived the equations that govern the evolution of the at-
mosphere and ocean, setting our discussion on a sound theoretical footing.
However, these equations describe myriad phenomena, many of which are not
central to our discussion of the large-scale circulation of the atmosphere and
ocean. In this chapter, therefore, we focus on a subset of possible motions
known as ‘balanced flows’ which are relevant to the general circulation.

We have already seen that large-scale flow in the atmosphere and ocean
is hydrostatically balanced in the vertical in the sense that gravitational and
pressure gradient forces balance one another, rather than inducing accelera-
tions. It turns out that the atmosphere and ocean are also close to balance
in the horizontal, in the sense that Coriolis forces are balanced by horizon-
tal pressure gradients in what is known as ‘geostrophic motion’ – from the
Greek: ‘geo’ for ‘earth’, ‘strophe’ for ‘turning’. In this Chapter we describe
how the rather peculiar and counter-intuitive properties of the geostrophic
motion of a homogeneous fluid are encapsulated in the ‘Taylor-Proudman
theorem’ which expresses in mathematical form the ‘stiffness’ imparted to a
fluid by rotation. This stiffness property will be repeatedly applied in later
chapters to come to some understanding of the large-scale circulation of the
atmosphere and ocean. We go on to discuss how the Taylor-Proudman theo-
rem is modified in a fluid in which the density is not homogeneous but varies
from place to place, deriving the ‘thermal wind equation’. Finally we dis-
cuss so-called ‘ageostrophic flow’ motion, which is not in geostrophic balance
but is modified by friction in regions where the atmosphere and ocean rubs
against solid boundaries or at the atmosphere-ocean interface.
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202 CHAPTER 7. BALANCED FLOW

7.1 Geostrophic motion

Let us begin with the momentum equation (6.43) for a fluid on a rotating
Earth and consider the magnitude of the various terms. First, we restrict
attention to the free atmosphere and ocean (by which we mean away from
boundary layers), where friction is negligible1. Suppose each of the horizontal
flow components u and v has a typical magnitude U , and that each varies in
time with a characteristic time scale T and with horizontal position over a
characteristic length scale L. Then the first two terms on the left side of the
horizontal components of Eq.(6.43) scale as2:

Du

Dt
+ fbz× u =∂u

∂t
U
T

+ u·∇u
U2
L

+ fbz× u
fU

For typical large scale flows in the atmosphere, U ∼ 10m s−1, L ∼ 106m,
and T ∼ 105 s and so U/T ≈ U2/L ∼ 10−4ms−2. That U/T ≈ U2/L is no
accident; the time scale on which motions change is intimately related to the
time taken for the flow to traverse a distance L, viz., L/U . So in practice
the acceleration terms ∂u

∂t
and u·∇u are of comparable in magnitude to one-

another and scale like U2/L. The ratio of these acceleration terms to the
Coriolis term is known as the Rossby number3:

1The effects of molecular viscosity are utterly negligible in the atmosphere and ocean,
except very close to solid boundaries. Small-scale turbulent motions can in some ways
act like viscosity, with an ‘effective eddy viscosity’ that is much larger than the molecular
value. However, even these effects are usually quite negligible away from the boundaries.

2We have actually anticipated something here that is evident only a posteriori : vertical
advection makes a negligible contribution to (u ·∇)u.

3 Carl-Gustav Rossby (1898-1957). Swedish-born meteorologist, one
of the major figures in the founding of modern dynamical study of the atmosphere and
ocean. In 1928, he was appointed chair of meteorology in the Department of Aeronautics
in 1928 at M.I.T. This group later developed into the first Department of Meteorology in
an academic institution in the United States. His name is recalled ubiquitously in Rossby
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Figure 7.1: Geostrophic flow around (left) a high pressure center and (right) a low
pressure center. (Northern hemisphere case, f > 0.) The effect of Coriolis deflect-
ing flow ‘to the right’ – see Fig.6.10 – is balanced by the horizontal component
of the pressure gradient force, −1

ρ
∇p, directed from high to low pressure.

Ro =
U
fL

(7.1)

In middle latitudes (say near 45◦ – see Table 6.1), f ' 2Ω/
√
2 = 1.03×

10−4 s−1. So, given our typical numbers, Ro ' 0.1: the Rossby number in the
atmosphere is small. We will see in Section 9.3 that Ro ' 10−3 for large-scale
ocean circulation.
The smallness of Ro for large-scale motion in the free atmosphere and

ocean4 implies that the acceleration term in Eq.(6.43) dominates the Coriolis
term, leaving

f ẑ× u+ 1
ρ
∇p = 0 . (7.2)

Equation (7.2) defines geostrophic balance, in which the pressure gradient is
balanced by the Coriolis term. We expect this balance to be approximately
satisfied for flows of small Ro. Another way of saying the same thing is

waves, the Rossby number and the Rossby radius of deformation, all ideas fundamental
to the understanding of all planetary scale fluids.

4Near the equator, where f → 0, the small Rossby number assumption breaks down,
as will be seen, e.g., in Section 12.2.2, below.
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that, if we define the geostrophic wind, or current, to be the velocity ug that
exactly satisfies Eq.(7.2), then u ' ug in such flows. Since ẑ× ẑ× u = −u,
(7.2) gives

ug =
1

fρ
ẑ×∇p , (7.3)

or, in component form in the local Cartesian geometry of Fig.6.19,

(ug, vg) =

µ
− 1
fρ

∂p

∂y
,
1

fρ

∂p

∂x

¶
. (7.4)

The geostrophic balance of forces described by (7.2) is illustrated in
Fig.7.1. The pressure gradient force is, of course, directed away from the
high pressure system on the left, and towards the low pressure system on
the right. The balancing Coriolis forces must be as shown, directed in the
opposite sense, and consequently the geostrophically balanced flow must be
normal to the pressure gradient, i.e., along the contours of constant pres-
sure, as Eq.(7.3) makes explicit. For the northern hemisphere cases (f > 0)
illustrated in Fig.7.1, the sense of the flow is clockwise around a high pres-
sure system, and anticlockwise around a low. (The sense is opposite in the
southern hemisphere.) The rule is summarized in Buys-Ballot’s (the 19th
century Dutch meteorologist) law:

If you stand with you back to the wind in the northern
hemisphere, low pressure is on your left

("left"→"right" in the southern hemisphere).
As Eq.(7.3) makes explicit, the geostrophic flow depends on the magni-

tude of the pressure gradient, and not just its direction. Consider Fig.7.2,
on which the curved lines show two isobars of constant pressure p and p+δp,
separated by the variable distance δs. From Eq.(7.3),

|ug| =
1

fρ
|∇p| = 1

fρ

δp

δs
.

Since δp is constant along the flow, |ug| ∝ (δs)−1; the flow is strongest where
the isobars are closest together. The geostrophic flow does not cross the
pressure contours, and so the latter act like the banks of a river, causing
the flow to speed up where the river is narrow and to slow down where it is
wide. These characteristics explain, in large part, why the meteorologist is
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Figure 7.2: Schematic of two pressure contours (isobars) on a horizontal sur-
face. The geostrophic flow, defined by Eq.(7.3), is directed along the isobars; its
magnitude increases as the isobars become closer together.

traditionally preoccupied with pressure maps: the pressure field determines
the winds.
Note that the vertical component of the geostrophic flow, as defined by

Eq.(7.3), is zero. This cannot be deduced directly from Eq.(7.2), which
involves the horizontal components of the flow. However, consider for a
moment an incompressible fluid (in the laboratory or the ocean) for which
we can neglect variations in ρ. Further, while f varies on the sphere, it is
almost constant over scales of, say, 1000 km or less5. Then Eq.(7.4) gives

∂ug
∂x

+
∂vg
∂y

= 0 . (7.5)

Thus, the geostrophic flow is horizontally non-divergent. Comparison with
the continuity Eq.(6.11) then tells us that ∂wg/∂z = 0; if wg = 0 on, say,
a flat bottom boundary, then it follows that wg = 0 everywhere, and so the
geostrophic flow is, indeed, horizontal.

5Variations of f do matter, however, for motions of planetary scale, as will be seen for
example in Section 10.2.1.
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Figure 7.3: Schematic used in converting from pressure gradients on height sur-
faces to height gradients on pressure surfaces.

In a compressible fluid such as the atmosphere, density variations compli-
cate matters. We therefore now consider the equations of geostrophic balance
in pressure coordinates, in which case such complications do not arise.

7.1.1 The geostrophic wind in pressure coordinates

In order to apply the geostrophic equations to atmospheric observations and
particularly to upper air analyses (see below), we need to express them in
terms of height gradients on a pressure surface, rather than, as in Eq.(7.4),
of pressure gradients at constant height.
Consider Fig.7.3. The figure depicts a surface of constant height z0, and

one of constant pressure p0, which intersect at A, where of course pressure is
pA = p0 and height is zA = z0. At constant height, the gradient of pressure
in the x-direction is µ

∂p

∂x

¶
z

=
pC − p0

δx
(7.6)

where δx is the (small) distance between C and A and subscript z means
‘keep z constant’. Now, the gradient of height along the constant pressure
surface is µ

∂z

∂x

¶
p

=
zB − z0
δx

.

subscript p means ‘keep p constant’. Since zC = z0, and pB = p0, we can use
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the hydrostatic balance equation Eq.(3.3) to write

pC − p0
zB − z0

=
pC − pB
zB − zC

= −∂p
∂z
= gρ

and so pC − p0 = gρ (zB − z0).
Therefore from Eq.(7.6), and invoking a similar result in the y-direction,

it follows that µ
∂p

∂x

¶
z

= gρ

µ
∂z

∂x

¶
p

;µ
∂p

∂y

¶
z

= gρ

µ
∂z

∂y

¶
p

.

In pressure coordinates Eq.(7.3) thus becomes:

ug =
g

f
bzp ×∇pz , (7.7)

where bzp is the upward unit vector in pressure coordinates and ∇p denotes
the gradient operator in pressure coordinates. In component form it is,

(ug, vg) =

µ
−g

f

∂z

∂y
,
g

f

∂z

∂x

¶
. (7.8)

The wonderful simplification of Eq.(7.8) relative to (7.4) is that ρ does not
explicitly appear and therefore, in evaluation from observations, we need not
be concerned about its variation. Just like p contours on surfaces of constant
z, z contours on surfaces of constant p are streamlines of the geostrophic
flow. The geostrophic wind is nondivergent in pressure coordinates if f is
taken as constant:

∇p · ug =
∂u

∂x
+

∂v

∂y
= 0 . (7.9)

Eq.(7.9) enables us to define a streamfunction:

ug = −
∂ψg

∂y
; vg =

∂ψg

∂x
(7.10)

which, as can be verified by substitution, satisfies Eq.(7.8) for any ψg =
ψg(x, y, p, t). Comparing Eq.(7.10) with Eq.(7.8) we see that:
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Figure 7.4: The 500mbar wind and geopotential height field at 12GMT on June
21st, 2003. [Latitude and longitude (in degrees) are labelled by the numbers along
the left and bottom edge of the plot.] The wind blows away from the quiver: one
full quiver denotes a speed of 10m s−1, one half-quiver a speed of 5m s−1. The
geopotential height is contoured every 60m. Centers of high and low pressure
are marked H and L. The position marked A is used as a check on geostrophic
balance. The thick black line marks the position of the meridional section shown
in Fig. 7.21 at 80◦W extending from 20◦N to 70◦N. This section is also marked
on Figs. 7.5 , 7.20 and 7.25.
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ψg =
g

f
z. (7.11)

Thus height contours are streamlines of the geostrophic flow on pressure
surfaces: the geostrophic flow streams along z contours, as can be seen in
Fig.7.4). This is in large part why the meteorologist is preoccupied with
the field of z(p): when interpreted in terms of the geostrophic relation, they
reveal the winds.
What does Eq.(7.8) imply about the magnitude of the wind? In Fig.5.13

we saw that the 500mbar pressure surface slopes down by a height ∆z =
800m over a meridional distance L = 5000 km; then geostrophic balance
implies a wind of strength u = g

f
∆z
L
= 9.81

10−4
800
5×106 ≈ 15m s−1.

Thus Coriolis forces acting on a zonal wind of speed∼ 15ms−1, are of suf-
ficient magnitude to balance the poleward pressure gradient force associated
with the pole-equator temperature gradient. This is just what is observed;
see the strength of the mid-level flow shown in Fig.5.20. Geostrophic balance
thus ‘connects’ Figs.5.13 and 5.20 together.
Let us now look at some synoptic charts such as those shown in Fig.5.22

and 7.4, to see geostrophic balance in action.

7.1.2 Highs and Lows; synoptic charts

Fig.7.4 shows the height of the 500mb surface (contoured every 60m) plotted
with the observed wind vector (one full quiver represents a wind speed of 10
m s−1) at an instant in time: 12GMT on June 21st, 2003, to be exact, the
same time as the hemispheric map shown in Fig.5.22. Note how the wind
blows along the height contours and is strongest the closer the contours are
together, just as saw see in Fig.7.1. At this level, away from frictional effects
at the ground, the wind is close to geostrophic.
Consider, for example, the point marked by the left ‘foot’ of the ‘A’

shown in Fig.7.4, at 43◦N, 133◦W. The wind is blowing along the height
contours to the SSE at a speed of 25m s−1. We estimate that the 500mbar
height surface slopes down at a rate of 60m in 250 km here (noting that 1◦

of latitude is equivalent to a distance of 111 km and that the contour interval
is 60m). The geostrophic relation, Eq.(7.7), then implies a wind of speed
g
f
∆z
L
= 9.81

9. 7×10−5
60

2.5×105 = 24ms
−1, close to that observed. Indeed the wind at

upper levels in the atmosphere is very close to geostrophic balance.
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In Fig.7.5 we plot the Ro (calculated as |u·∇u| / |fu|) for the synoptic
pattern shown in Fig.7.4. It is about 0.1 over most of the region and so the
flow is to a good approximation in geostrophic balance. However Ro can
approach unity in intense low pressure systems where the flow is strong and
the flow curvature large, such as in the low centered over 80◦W, 40◦N. Here
the Coriolis and advection terms are of comparable magnitude to one another
and there is a 3-way balance between Coriolis, inertial and pressure gradient
forces. Such a balance is known as ‘gradient wind balance’ – see Section
7.1.3 below.

7.1.3 Balanced flow in the radial-inflow experiment

At this point it is useful to return to the radial inflow experiment –GFD Lab
III, described in Section 6.6.1 – and compute the Rossby number assuming
that axial angular momentum of fluid parcels is conserved as they spiral into
the drain hole (see Fig.6.6). The Rossby number implied by Eq.(6.23) is
given by:

Ro =
vθ
2Ωr

=
1

2

µ
r21
r2
− 1
¶

(7.12)

where r1 is the outer radius of the tank. It is plotted as a function of r
r1
in

Fig.7.6(right).
The observed Ro, based on tracking particles floating on the surface of the

fluid (see Fig.6.6) together with the theoretical prediction, (7.12), are plotted
in Fig.7.6. We see broad agreement, but the observations depart from the
theoretical curve at small r and high Ro, due, perhaps, to the difficulty of
tracking the particles in the high speed core of the vortex (note the blurring
of the particles at small radius evident in Fig.6.6).
According to Eq.(7.12) and Fig.7.6, Ro = 0 at r = r1, Ro = 1 at a

radius r1√
3
= 0.58r1, and rapidly increases as r decreases further. Thus

the azimuthal flow is geostrophically balanced in the outer regions (small
Ro) with the radial pressure gradient force balancing the Coriolis force in
Eq.(6.21). In the inner regions (high Ro) the

v2θ
r
term in Eq.(6.21) balances

the radial pressure gradient – this is known as ‘cyclostrophic balance’. In
the middle region (where Ro ∼ 1) all three terms in Eq.(6.21) play a role; this
is known as ‘gradient wind balance’ of which geostrophic and cyclostrophic
balance are limiting cases. As mentioned earlier, gradient wind balance can
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Figure 7.5: The Rossby number for the 500mbar flow at 12GMT on June 21st,
2003, the same time as Fig.7.4. The contour interval is 0.1. Note that Ro ∼ 0.1
over most of the region but can approach 1 in strong cyclones, such as the low
centered over 80◦W, 40◦N.
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Figure 7.6: Left: the Ro number plotted as a function of non-dimensional radius
( r
r1
) computed by tracking particles in three radial inflow experiments (each at a

different rotation rate – quoted here in revolutions per minute (rpm)). Right:
theoretical prediction based on Eq.(7.12).

be seen in the synoptic chart shown in Fig.7.4, in the low pressure regions
where Ro ∼ 1 (Fig.7.5).

7.2 The Taylor-Proudman Theorem

A remarkable property of geostrophic motion is that if the fluid is homoge-
neous (ρ uniform) then, as we shall see, the geostrophic flow is two dimen-
sional and does not vary in the direction of the rotation vector, Ω. Known
as the Taylor-Proudman theorem, we discuss this statement here and make
much subsequent use of it – particularly in Chapters 10 and 11 – to discuss
the constraints of rotation on the motion of the atmosphere and ocean.
For the simplest derivation of the theorem let us begin with the geostrophic

relation written out in component form, Eq.(7.4). If ρ and f are constant,
then taking the vertical derivative of the geostrophic flow components and
using hydrostatic balance, we see that

³
∂ug
∂z

, ∂vg
∂z

´
= 0: i.e. the geostrophic

flow does not vary in the direction of fbz.
A slightly more general statement of this result can be obtained if we go

right back to the pristine form of the momentum equation (6.29) in rotating
coordinate. If the flow is sufficiently slow and steady (Ro << 1) and F is
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Figure 7.7: Dye distributions from GFD Lab 0: on the left we see a pattern
from dyes (colored red and green) stirred into a non-rotating fluid in which the
turbulence is three-dimensional; on the right we see dye patterns obtained in a
rotating fluid in which the turbulence occurs in planes perpendicular to the rotation
axis and is thus two-dimensional.

Figure 7.8: The Taylor-Proudman theorem, Eq.(7.14), states that slow, steady,
frictionless flow of a barotropic, incompressible fluid is 2-dimensional and does not
vary in the direction of the rotation vector Ω.
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negligible, it reduces to:

2Ω× u +
1

ρ
∇p + ∇φ = 0 (7.13)

The horizontal component of Eq.(7.13) yields geostrophic balance –Eq.(7.2)
or Eq.(7.4) in component form – where now bz is imagined to point in the
direction of Ω – see Fig.7.8. The vertical component of Eq.(7.13) yields
hydrostatic balance, Eq.(3.3). Taking the curl (∇× ) of Eq.(7.13), we find
that if the fluid is barotropic (i.e. one in which ρ = ρ(p)) then:6

( Ω.∇)u = 0 (7.14)

or (since Ω.∇ is the gradient operator in the direction of Ω i.e. bz)
∂u

∂z
= 0. (7.15)

Equation (7.14) is known as the Taylor-Proudman theorem (or T-P for
short). T-P says that under the stated conditions – slow, steady, frictionless
flow of a barotropic fluid – the velocity u, both horizontal and vertical
components, cannot vary in the direction of the rotation vector Ω. In other
words the flow is two—dimensional, as sketched in Fig.7.8. Thus, vertical
columns of fluid remain vertical – they cannot be tilted over or stretched:
we say that the fluid is made ‘stiff’ in the direction of Ω. The columns
are called ‘Taylor Columns’ after G.I. Taylor who first demonstrated them
experimentally7.

6Using vector identities 2. and 6. of Appendix 13.2, setting a −→ Ω and b −→ u,
remembering that ∇ · u = 0 and ∇×∇(scalar) = 0.

7 Geoffrey Ingram Taylor (1886—1975). British scientist who made
fundamental and long-lasting contributions to a wide range of scientific problems, espe-
cially theoretical and experimental investigations of fluid dynamics. The result Eq.(7.14)
was first demonstrated by Joseph Proudman in 1915 but is now called the Taylor—
Proudman theorem. Taylor’s name got attached because he demonstrated the theorem
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Rigidity, imparted to the fluid by rotation, is at the heart of the glorious
dye patterns seen in experiment GFD Lab 0. On the right of Fig.7.7, the
rotating fluid, brought in to gentle motion by stirring, is constrained to move
in two-dimensions. Rich dye patterns emerge in planes perpendicular to Ω
but with strong vertical coherence between the levels: flow at one horizontal
level moves in lockstep with the flow at another level. In contrast, a stirred
non-rotating fluid mixes in three dimensions and has an entirely different
character with no vertical coherence; see the left frame of Fig.7.7.

Taylor columns can readily be observed in the laboratory in a more con-
trolled setting, as we now go on to describe.

7.2.1 GFD Lab VII: ‘Taylor columns’

Suppose a homogeneous rotating fluid moves in a layer of variable depth, as
sketched in Fig.7.9. This can easily be arranged in the laboratory by placing
an obstacle (such as a bump made of a plastic pillbox) in the bottom of a
tank of water rotating on a turntable and observing the flow of water past
the obstacle, as depicted in Fig.7.9. The T-P theorem demands that vertical
columns of fluid move along contours of constant fluid depth because they
cannot be stretched.

At levels below the top of the obstacle, the flow must of course go around
it. But Eq.(7.15) says that the flow must be the same at all z: so, at all
heights, the flow must be deflected as if the bump on the boundary extended
all the way through the fluid! We can demonstrate this behavior in the
laboratory, using the apparatus sketched in Fig.7.10 and described in the
legend, by inducing flow past a submerged object.

We see the flow (marked by paper dots floating on the free surface) being
diverted around the obstacles in a vertically coherent way (as shown in the
photograph of Fig.7.11) as if the obstacle extended all the way through the
water, thus creating stagnant “Taylor columns” above the obstacle.

experimentally – see GFD Lab VII. In a paper published in 1921, he reported slowly
dragging a cylinder through a rotating flow. The solid object all but immobilized an
entire column of fluid parallel to the rotation axis.
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Figure 7.9: The T-P theorem demands that vertical columns of fluid move along
contours of constant fluid depth because, from Eq.(7.14), ∂w/∂z = 0 and therefore
they cannot be stretched. Thus fluid columns act as if they were rigid columns
and move along contours of constant fluid depth. Horizontal flow is thus deflected
as if the obstable extended through the whole depth of the fluid.

Figure 7.10: We place a cylindrical tank of water on a table turning at about 5
rpm. An obstacle is placed on the base of the tank whose height is a small fraction
of the fluid depth; the water is left until it comes into solid body rotation. We now
make a very small reduction in Ω (by 0.1 rpm or less). Until a new equilibrium is
established (the “spin-down” process takes several minutes, depending on rotation
rate and water depth), horizontal flow will be induced relative to the obstacle.
Dots on the surface, used to visualize the flow – see Fig.7.11 – reveal that the
flow moves around the obstacle as if the obstacle extended through the whole depth
of the fluid.
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Figure 7.11: Paper dots on the surface of the fluid shown in the experiment
described in Fig. 7.10. The dots move around, but not over, a submerged obstacle,
in experimental confirmation of the schematic drawn in Fig.7.9.

7.3 The thermal wind equation

We saw in Section 5.2 that isobaric surfaces slope down from equator to pole.
Moreover, these slopes increase with height, as can be seen, for example,
in Fig.5.13 and the schematic diagram, Fig.5.14. Thus according to the
geostrophic relation, Eq.(7.8), the geostrophic flow will increase with height,
as indeed is observed in Fig.5.20. According to T-P, however, ∂ug

∂z
= 0.

What’s going on?
The Taylor-Proudman theorem pertains to a slow, steady, frictionless,

barotropic fluid in which ρ = ρ(p). But in the atmosphere and ocean, density
does vary on pressure surfaces and so T-P does not strictly apply and must
be modified to allow for density variations.
Let us again consider the water in our rotating tank but now suppose

that the density of the water varies thus:

ρ = ρref + σ and
σ

ρref
<< 1

where ρref is a constant reference density, and σ–called the density anomaly
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– is the variation of the density about this reference.8

Now take ∂/∂z of Eq.(7.4) (replacing ρ by ρref where it appears in the
denominator) we obtain, making use of the hydrostatic relation Eq.(3.3):µ

∂ug
∂z

,
∂vg
∂z

¶
=

g

fρref

µ
∂σ

∂y
,−∂σ

∂x

¶
(7.16)

or, in vector notation (see Appendix 13.2, VI)

∂ug
∂z

= − g

fρref
bz×∇σ . (7.17)

So if ρ varies in the horizontal then the geostrophic current will vary in
the vertical. To express things in terms of temperature, and hence derive a
connection (called the thermal wind equation) between the current and the
thermal field, we can use our simplified equation of state for water, Eq.(4.4),
which assumes that the density of water depends on temperature T in a
linear fashion. Then Eq.(7.17) can be written:

∂ug
∂z

=
αg

f
bz×∇T (7.18)

where α is the thermal expansion coefficient. This is a simple form of the
thermal wind relation connecting the vertical shear of the geostrophic cur-
rent to horizontal temperature gradients. It tells us nothing more than the
hydrostatic and geostrophic balances Eq.(3.3) and Eq.(7.4), but it expresses
these balances in a different way.
We see that there is an exactly analogous relationship between ∂ug

∂z
and T

as between ug and p: compare Eqs.(7.18) and (7.3). So if we have horizontal
gradients of temperature then the geostrophic flow will vary with height.
The westerly winds increase with height because, through the thermal wind
relation, they are associated with the poleward decrease in temperature. We
now go on to study the thermal wind in a laboratory setting in which we
represent the cold pole by placing an ice bucket in the centre of a rotating
tank of water.

8Typically the density of the water in the rotating tank experiments, and indeed in the
ocean too (see Section 9.1.3) varies by only a few % about its reference value. Thus σ

ρref

is indeed very small.
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Figure 7.12: To study the thermal wind relation, we fill a cylindrical tank with
water to a depth of 10 cm, and rotate it very slowly (1 rpm or less). The can of
ice in the middle induces a radial temperature gradient. A thermal wind shear
develops in balance with it, which can be visualized with dye, as sketched on the
right. The experiment is left for 5 minutes or so for the circulation to develop.
The radial temperature gradient is monitored with thermometers and the currents
measured by tracking paper dots floating on the surface.

7.3.1 GFD Lab VIII: The thermal wind relation

It is straightforward to obtain a steady, axially-symmetric circulation driven
by radial temperature gradients in our laboratory tank, which provides an
ideal opportunity to study the thermal wind relation and the way in which
vertical shears of geostrophic currents are generated by horizontal density
gradients.
The apparatus is sketched in Fig.7.12 and can be seen in Fig.7.13. The

cylindrical tank, at the center of which is an ice bucket, is rotated very slowly
in an anticlockwise sense. The cold sides of the can cool the water adjacent
to it and induce a radial temperature gradient. Paper dots sprinkled over
the surface move in the same sense as, but more swiftly than, the rotating
table – we have generated westerly (to the east) currents! We inject some
dye; the dye streaks do not remain vertical but tilt over in an azimuthal
direction, carried along by currents which increase in strength with height
and are directed in the same sense as the rotating table (see the photograph
in Fig.7.13 and the schematic Fig.7.14). The Taylor Columns have been
tilted over by the westerly currents.
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Figure 7.13: Dye streaks being tilted over in to a cork-screw pattern by an az-
imuthal current in thermal wind balance with a radial temperature gradient main-
tained by the ice bucket at the center.

For our incompressible fluid in cylindrical geometry (see Appendix 13.2.3),
the azimuthal component of the thermal wind relation, Eq.(7.18), is:

∂vθ
∂z

=
αg

2Ω

∂T

∂r
,

where vθ is the azimuthal current (cf. Fig.6.8) and f has been replaced by
2Ω. Since T increases moving outwards from the cold center (∂T/∂r > 0)
then, for positive Ω, ∂vθ/∂z > 0. Since vθ is constrained by friction to be
weak at the bottom of the tank, we therefore expect to see vθ > 0 at the
top, with the strongest flow at the radius of maximum density gradient. Dye
streaks visible in Fig.7.13 clearly show the thermal wind shear, especially
near the cold can where the density gradient is strong.
We note the temperature difference, ∆T , between the inner and outer

walls a distance L apart (of order 1 ◦C per 10 cm), and the speed of the
paper dots at the surface relative to the tank (typically 1 cm s−1). The tank
is turning at 1 rpm, and the depth of water is H ∼ 10 cm. From the above
thermal wind equation we estimate that:
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ug ∼
αg

2Ω

∆T

L
H ∼ 1 cm s−1

for α = 2 × 10−4 K−1, roughly as we observe.
This experiment is discussed further in Section 8.2.1 as a simple analogue

of the tropical Hadley circulation of the atmosphere.

7.3.2 The thermal wind equation and the Taylor-Proudman
Theorem

The connection between the T-P theorem and the thermal wind equation
can be better understood by noting that Eqs.(7.17) and (7.18) are simplified
forms of a more general statement of the thermal wind equation which we
now derive.
Taking ∇×[Eq.(7.13)], but now relaxing the assumption of a barotropic

fluid, we obtain [noting that the term of the left of Eq.(7.13) transforms

as in the derivation of Eq.(7.14) and that ∇ ×
³
1
ρ
∇p
´
= − 1

ρ2
∇ρ × ∇p =

1
ρ2
∇p×∇ρ]:

(2Ω ·∇)u = 1

ρ
∇p× 1

ρ
∇ρ (7.19)

which is a more general statement of the ‘thermal wind’ relation. In the case
of constant ρ, or, more precisely, in a barotropic fluid where ρ = ρ(p) and so
∇ρ is parallel to∇p, Eq.(7.19) reduces to (7.14). But now we are dealing with
a baroclinic fluid in which density depends on temperature [see Eq.(4.4)] and
so ρ surfaces and p surfaces are no longer coincident. Thus the term on the
right of Eq.(7.19) – known as the baroclinic term – does not now vanish.
It can be simplified by noting that, to a very good approximation, the fluid
is in hydrostatic balance: 1

ρ
∇p+ gbz = 0 allowing it to be written:

(2Ω ·∇)u = 2Ω∂u

∂z
= −g

ρ
bz×∇ρ. (7.20)

When written in component form, Eq.(7.20) becomes Eq.(7.16) if 2Ω −→
fbz and ρ −→ ρref + σ.
The physical interpretation of the right hand side of Eqs.(7.16) and (7.20)

can now be better appreciated: it is the action of gravity on horizontal density
gradients trying to return surfaces of constant density to the horizontal, the
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Figure 7.14: A schematic showing the physical content of the thermal wind equa-
tion written in the form Eq.(7.20): spin associated with the rotation vector 2Ω
– [1] – is tilted over by the vertical shear (du/dz) [2]. Circulation in the trans-
verse plane develops – [3] – creating horizontal density gradients from the stable
vertical gradients. Gravity acting on the sloping density surfaces balances the
overturning torque associated with the tilted Taylor Columns [4].

natural tendency of a fluid under gravity to find its own level. But on the
large-scale this tendency is counter-balanced by the rigidity of the Taylor
columns, represented by the term on the left of Eq.(7.20). How this works is
sketched in Fig.7.14. The spin associated with the rotation vector 2Ω – [1]
– is tilted over by the vertical shear (du/dz) of the current as time progresses
[2]. Circulation in the transverse plane develops– [3] – and converts vertical
stratification in to horizontal density gradients. If the environment is stably
stratified, then the action of gravity acting on the sloping density surfaces
is in the correct sense to balance the overturning torque associated with the
tilted Taylor Columns [4]. This is the torque balance at the heart of the
thermal wind relation.

We can now appreciate how it is that gravity fails to return inclined
temperature surfaces, such as those shown in Fig.5.7, to the horizontal. It is
prevented from doing so by the Earth’s rotation.
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7.3.3 GFD Lab IX: cylinder ‘collapse’ under gravity
and rotation

A vivid illustration of the role that rotation plays in counteracting the action
of gravity on sloping density surfaces can be carried out by creating a density
front in a rotating fluid in the laboratory, as shown in Fig.7.15 and described
in the legend. An initially vertical column of dense salty water is allowed to
slump under gravity but is ‘held up’ by rotation forming a cone whose sides
have a distinct slope. The photographs in Fig.7.16 show the development of
a cone. The cone acquires a definite sense of rotation, swirling in the same
sense of rotation as the table. We measure typical speeds through the use of
paper dots, measure the density of the dyed water and the slope of the side
of the cone (the front), and interpret them in terms of the following theory.

Theory following Margules

A simple and instructive model of a front can be constructed as follows.
Suppose that the density is ρ1 on one side of the front and changes discon-
tinuously to ρ2 on the other, with ρ1 > ρ2 as sketched in Fig.7.17. Let y be
a horizontal axis normal to the discontinuity and let γ be the angle that the
surface of discontinuity makes with the horizontal. Since the pressure must
be the same on both sides of the front then the pressure change computed
along paths [1] and [2] in Fig.7.17 must be the same since they begin and
end at common points in the fluid:µ

∂p

∂z
δz +

∂p

∂y
δy

¶
path 2

=

µ
∂p

∂y
δy +

∂p

∂z
δz

¶
path 1

for small δy, δz. Hence, using hydrostatic balance to express ∂p
∂z
in terms of

ρg on both sides of the front, we find:

tan γ =
dz

dy
=

∂p1
∂y
− ∂p2

∂y

g
¡
ρ
1
− ρ

2

¢ .
Using the geostrophic approximation to the current, Eq.(7.4), to relate the
pressure gradient terms to flow speeds, we arrive at the following form of the
thermal wind equation (which should be compared to Eq.(7.16)):

(u2 − u1) =
g0 tan γ
2Ω

(7.21)
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Figure 7.15: We place a large tank on our rotating table, fill it with water to a
depth of 10 cm or so and place in the center of it a hollow metal cylinder of radius
r1 = 6 cm which protrudes slightly above the surface. The table is set into rapid
rotation at a speed of 10 rpm and allowed to settle down for 10 minutes or so.
Whilst the table is rotating the water within the cylinder is carefully and slowly
replaced by dyed, salty (and hence dense) water delivered from a large syringe.
When the hollow cylinder is full of colored saline water, it is rapidly removed in a
manner which causes the least disturbance possible – practice is necessary! The
subsequent evolution of the dense column is charted in Fig.7.16. The final state
is sketched on the right: the cylinder has collapsed into a cone whose surface is
displaced a distance δr relative to that of the original upright cylinder.
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Figure 7.16: (left) Series of pictures charting the creation of a dome of salty (and
hence dense) dyed fluid collapsing under gravity and rotation. The fluid depth
is some 10 cm. The white arrows indicate the sense of rotation of the dome. At
the top of the figure we show a view through the side of the tank facilitated by
a sloping mirror. (right) A schematic diagram of the dome showing its sense of
circulation.
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Figure 7.17: Geometry of the front separating fluid of differing densities used in
the derivation of Margules relation, Eq.(7.21).

where u is the component of the current parallel to the front and g0 = g∆ρ
ρ1

is the ‘reduced gravity’ with ∆ρ = ρ1 − ρ2 (cf. parcel ‘buoyancy’, defined
in Eq.(4.3) of Section 4.2) . Eq.(7.21) is known as ‘Margules relation’ –
a formula derived in 1903 by the Austrian meteorologist Max Margules, to
explain the slope of boundaries in atmospheric fronts. Here it relates the
swirl speed of the cone to g0, γ, and Ω.
In the experiment we typically observe a slump angle γ of perhaps 30◦ for

Ω ∼ 1 s−1 (corresponding to a rotation rate of 10rpm) and a g0 ∼ 0.2m s−2
(corresponding to a ∆ρ

ρ
of some 2%). Eq.(7.21) then predicts a swirl speed

of about 6 cm s−1, broadly in accord with what is observed in the high-speed
core of the swirling cone.
Finally, to make the connection of the experiment with the atmosphere

more explicit, we show in Fig.7.18 the dome of cold air that exists over the
north pole and the strong upper-level wind associated with it. The horizontal
temperature gradients and vertical wind shear are in thermal wind balance
on the planetary scale.

7.3.4 Mutual adjustment of velocity and pressure

The cylinder collapse experiment encourages us to wonder about the adjust-
ment between the velocity field and the pressure field. Initially (left frame of
Fig.7.15) the cylinder is not in geostrophic balance. The ‘end state’, sketched
in the right frame and being approached in Fig.7.16(bottom) and Fig.7.18, is
in ‘balance’ and well described by Margules formula, Eq.(7.21). How far does
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Figure 7.18: The dome of cold air that exists over the north pole shown in the
instantaneous slice across the pole on the left (shaded green) is associated with
strong upper-level winds marked ⊗ and ¯, and contoured in red. On the right we
show a schematic diagram of the column of salty water studied in GFD Lab IX
(cf. Figs.7.15 and 7.16. The column is prevented from slumping all the way to the
bottom by the rotation of the tank. Differences in Coriolis forces acting on the
spinning column provide a ‘torque’ which balances that of gravity acting on salty
fluid trying to pull it down.

the cylinder have to slump sideways before the velocity field and the pres-
sure field come in to this balanced state? This problem was of great interest
to Rossby and is known as the ‘Rossby adjustment problem’. The detailed
answer is in general rather complicated but we can arrive at a qualitative
estimate rather directly, as follows.
Let us suppose that the collapse of the column occurs conserving angular

momentum so that Ωr2 + ur = constant, where r is the distance from the
center of the cone and u is the velocity at its edge. If r1 is the initial radius
of a stationary ring of salty fluid (on the left of Fig.7.15) then it will have an
azimuthal speed given by:

u = −2Ωδr (7.22)

if it changes its radius by an amount δr (assumed small) as marked on the
right of Fig.7.15. In the upper part of the water column, δr < 0 and the ring
will acquire a cyclonic spin; below, δr > 0 and the ring will spin anticycloni-
cally.9 This slumping will proceed until the resulting vertical shear is enough

9In practice, friction caused by the cone of fluid rubbing over the bottom brings currents
there toward zero. The thermal wind shear remains, however, with cyclonic flow increasing
all the way up to the surface.



228 CHAPTER 7. BALANCED FLOW

to satisfy Eq.(7.21). Assuming that tan γ ∼ H
|δr| where H is the depth of the

water column, combining Eqs.(7.22) and (7.21) we see that this will occur
at a value of δr ∼ Lρ =

√
g0H
2Ω
. By noting that10 g0H ≈ N2H2, Lρ can be

expressed in terms of the buoyancy frequency N of a continuously stratified
fluid thus:

Lρ =

√
g0H
2Ω

=
NH

2Ω
(7.23)

where nowH is interpreted as the vertical scale of the motion. The horizontal
length scale Eq.(7.23) is known as the ‘Rossby radius of deformation’. It is
the scale at which the effects of rotation become comparable with those of
stratification. More detailed analysis shows that on scales smaller than Lρ

the pressure adjusts to the velocity field whereas on scales much greater than
Lρ the reverse is true and the velocity adjusts to the pressure.
For the values of g0 and Ω appropriate to our cylinder collapse experiment

described above, Lρ ∼ 7 cm if H = 10 cm. This is the roughly in accord
with the observed slumping scale of our salty cylinder as seen in Fig.7.16.
We shall see in Chapters 8 and 9 that Lρ ∼ 1000 km in the atmospheric
troposphere and Lρ ∼ 30 km in the main thermocline of the ocean; the
respective deformation radii set the horizontal scale of the ubiquitous eddies
observed in the two fluids.

7.3.5 Thermal wind in pressure coordinates

Eqs.(7.16) pertain to an incompressible fluid such as water or the ocean.
The thermal wind relation appropriate to the atmosphere is untidy when ex-
pressed with height as a vertical coordinate (because of ρ variations). How-
ever it becomes simple when expressed in pressure coordinates. To proceed
in p coordinates, we write the hydrostatic relation:

∂z

∂p
= − 1

gρ

10In a stratified fluid the buoyancy frequency (Section 4.4) is given by N2 = −g
ρ
dρ
dz

or N2 ∼ g0
H where g

0= g∆ρρ and ∆ρ is a typical variation in density over the vertical
scale H.
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and take, for example, the p-derivative of the x-component of Eq.(7.8) yield-
ing:

∂ug
∂p

= −g

f

∂2z

∂p∂y
= −g

f

µ
∂

∂y

·
∂z

∂p

¸¶
p

=
1

f

∂

∂y

µ
1

ρ

¶
p

.

Since 1/ρ = RT/p, its derivative at constant pressure is

∂

∂y

µ
1

ρ

¶
p

=
R

p

µ
∂T

∂y

¶
p

,

whence µ
∂ug
∂p

,
∂vg
∂p

¶
=

R

fp

Ãµ
∂T

∂y

¶
p

,−
µ
∂T

∂x

¶
p

!
. (7.24)

Eq.(7.24) expresses the thermal wind relationship in pressure coordinates.
By analogy with Eq.(7.8), just as height contours on pressure surface act
as a streamlines for the geostrophic flow, then we see from Eq.(7.24) that
temperature contours on a pressure surface act as streamlines for the thermal
wind shear. We note in passing that one can obtain a relationship similar
to Eq.(7.24) in height coordinates (see Q9 at end of Chapter), but it is less
elegant because of the ρ factors in Eq.(7.4). The thermal wind can also be
written down in terms of potential temperature; see Q10, also at the end of
the Chapter.
The connection between meridional temperature gradients and vertical

wind shear expressed in Eq.(7.24), is readily seen in the zonal-average clima-
tology – see Figs.5.7 and 5.20. Thus, since temperature decreases poleward,
∂T/∂y < 0 in the northern hemisphere, but ∂T/∂y > 0 in the southern
hemisphere; hence f−1∂T/∂y < 0 in both. Then Eq.(7.24) tells us that
∂u/∂p < 0: so, with increasing height (decreasing pressure), winds must be-
come increasingly eastward (westerly) in both hemispheres (as sketched in
Fig.7.19), which is just what we observe in Fig.5.20.
The atmosphere is also close to thermal wind balance on the large scale

at any instant. For example Fig.7.20 shows T on the 500mbar surface on
12GMT on June 21st, 2003, the same time as the plot of the 500mbar height
field shown in Fig.7.4. Remember that by Eq.(7.24), the T contours are
streamlines of the geostrophic shear, ∂ug

∂p
. Note the strong meridional gradi-

ents in middle latitudes associated with the strong meandering jet stream.
These gradients are also evident in Fig.7.21, a vertical cross section of tem-
perature, T , and zonal wind, u, through the atmosphere at 80◦W extending



230 CHAPTER 7. BALANCED FLOW

Figure 7.19: A schematic of westerly winds observed in both hemispheres in ther-
mal wind balance with the equator-to-pole temperature gradient. (See Eq.(7.24)
and the observations shown in Figs.5.7 and 5.20.)

from 20◦N to 70◦N at the same time as in Fig.7.20. The vertical coordinate is
pressure. Note that, in accord with Eq.(7.24), the wind increases with height
where T surfaces slope upward toward the pole and decreases with height
where T surfaces slope downwards. The vertical wind shear is very strong
in regions where the T surfaces steeply slope; the vertical wind shear is very
weak where the T surfaces are almost horizontal. Note also the anomalously
cold air associated with the intense low at 80◦W, 40◦N marked in Fig.7.4.
In summary, then, Eq.(7.24) accounts quantitatively, as well as qualita-

tively, for the observed connection between horizontal temperature gradients
and vertical wind shear in the atmosphere. As we shall see in Chapter 9, an
analogous expression of thermal wind applies in exactly the same way in the
ocean too.

7.4 Subgeostrophic flow: the Ekman layer

Before returning to our discussion of the general circulation of the atmosphere
in Chapter 8, we must develop one further dynamical idea. Although the
large-scale flow in the free atmosphere and ocean is close to geostrophic
and thermal wind balance, in boundary layers where fluid rubs over solid
boundaries or when the wind directly drives the ocean, we observe marked
departures from geostrophy due to the presence of the frictional terms in
Eq.(6.29).
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Figure 7.20: The temperature, T , on the 500mbar surface at 12GMT on June
21st, 2003, the same time as Fig.7.4. The contour interval is 2 ◦C. The thick
black line marks the position of the meridional section shown in Fig.7.21 at 80◦W
extending from 20◦N to 70◦N. A region of pronounced temperature contrast sep-
arates warm air (pink) from cold air (blue). The coldest temperatures over the
pole get as low as −32 ◦C.
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Figure 7.21: A cross section of zonal wind, u (color-scale, green indicating away
from us and brown toward us) and thin contours every 5m s−1), and potential tem-
perature, T (thick contours every 5 ◦C) through the atmosphere at 80◦W extending
from 20◦N to 70◦N on June 21st, 2003 on at 12GMT, as marked on Figs.7.20 and
7.4. Note that ∂u

∂p
< 0 in regions where ∂T

∂y
< 0 and visa-versa.
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Figure 7.22: The balance of forces in Eq.(7.25): the dotted line is the vector sum
F − fbz× u and is balanced by −1

ρ
∇p.

The momentum balance Eq.(7.2) pertains if the flow is sufficiently slow
(Ro << 1) and frictional forces F sufficiently small – i.e. when both F
and Du/Dt in Eq.(6.43) can be neglected. Frictional effects are indeed small
in the interior of the atmosphere and ocean, but they become important
in boundary layers. In the bottom kilometer or so of the atmosphere, the
roughness of the surface generates turbulence which communicates the drag
of the lower boundary to the free atmosphere above. In the top one hundred
meters or so of the ocean the wind generates turbulence which carries the
momentum of the wind down in to the interior. The layer in whichF becomes
important is called the ‘Ekman layer’ after the famous Swedish oceanographer
who studied the wind-drift in the ocean, as will be discussed in detail in
Chapter 10.
If the Rossby number is again assumed to be small but F is now not neg-

ligible, then the horizontal component of the momentum balance, Eq.(6.43),
become:

fbz× u + 1

ρ
∇p = F (7.25)

To visualize these balances, consider Fig.7.22. Let’s start with u: the
Coriolis force per unit mass, −fbz × u, must be to the right of the flow,
as shown. If the frictional force per unit mass, F , acts as a ‘drag’ it will
be directed opposite to the prevailing flow. The sum of these two forces
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is depicted by the dashed arrow. This must be balanced by the pressure
gradient force per unit mass, as shown. Thus, the pressure gradient is no
longer normal to the wind vector, or (to say the same thing) the wind is
no longer directed along the isobars. Although there is still a tendency for
the flow to have low pressure on its left, there is now a (frictionally-induced)
component down the pressure gradient (toward low pressure).
Thus we see that in the presence of F , the flow speed is subgeostrophic

(less than geostrophic) and so the Coriolis force (whose magnitude is propor-
tional to the speed) is not quite sufficient to balance the pressure gradient
force. Thus the pressure gradient force ‘wins’, resulting in an ageostrophic
component directed from high to low pressure. The flow ‘falls down’ the
pressure gradient slightly.
It is often useful to explicitly separate the horizontal flow, uh, in the

geostrophic and ageostrophic components thus:

uh = ug+ uag (7.26)

where uag is the ageostrophic current, the departure of the actual horizon-
tal flow from its geostrophic value, ug, given by Eq.(7.3). Using Eq.(7.25),
Eq.(7.26) and the geostrophic relation Eq.(7.2), we see that:

fbz× uag = F (7.27)

Thus the ageostrophic component is always directed ‘to the right’ of F (in
the northern hemisphere).
We can readily demonstrate the role of Ekman layers in the laboratory

as follows.

7.4.1 GFD Lab X - Ekman layers: frictionally-induced
cross-isobaric flow

We bring a cylindrical tank filled with water up to solid-body rotation at a
speed of 5 rpm, say. A few crystals of potassium permanganate are dropped
into the tank – they leave streaks through the water column as they fall
and settle on the base of the tank – and float paper dots on the surface
to act as tracers of upper level flow. The rotation rate of the tank is then
reduced by 10% or so. The fluid continues in solid rotation creating a cyclonic
vortex (same sense of rotation as the table) implying, through the geostrophic
relation, lower pressure in the center and higher pressure near the rim of the
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tank. The dots on the surface describe concentric circles and show little
tendency toward radial flow. However at the bottom of the tank we see
plumes of dye spiral inward to the center of the tank at about 45◦ relative
to the geostrophic current – see Fig.7.23, top panel. Now we increase the
rotation rate. The relative flow is now anticyclonic with, via geostrophy, high
pressure in the center and low pressure on the rim. Note how the plumes of
dye sweep around to point outward – see Fig.7.23, bottom panel.
In each case we see that the rough bottom of the tank slows the currents

down there, and induces cross-isobaric, ageostrophic, flow from high to low
pressure, as schematized in Fig.7.24. Above the frictional layer – which, as
mentioned above, is called the ‘Ekman layer’ (see Section 10.1) – the flow
remains close to geostrophic.

7.4.2 Ageostrophic flow in atmospheric highs and lows

Ageostrophic flow is clearly evident in the bottom kilometer or so of the at-
mosphere where the frictional drag of the rough underlying surface is directly
felt by the flow. For example Fig.7.25 shows the surface pressure field and
wind at the surface at 12GMT on June 21st, 2003, at the same time as the
upper level flow shown in Fig.7.4. We see that the wind broadly circulates
in the sense expected from geostrophy, anticylonically around highs and cy-
clonically around the lows. But the surface flow also has a marked component
directed down the pressure gradient, into the lows and out of the highs, due
to frictional drag at the ground. The sense of the ageostrophic flow is exactly
the same as that seen in GFD Lab X (cf. Fig.7.23 and Fig.7.24).

A simple model of winds in the Ekman layer

Eq.(7.25) can be solved to give a simple expression for the wind in the Ekman
layer. Let us suppose that the x−axis is directed along the isobars and that
the surface stress decreases uniformly throughout the depth of the Ekman
layer from its surface value to become small at z = δ, where δ is the depth
of the Ekman layer such that

F = −k
δ
u (7.28)

where k is a drag coefficient that depends on the roughness of the underlying
surface. Note that the minus sign ensures that F acts as a drag on the flow.



236 CHAPTER 7. BALANCED FLOW

Figure 7.23: Ekman flow in a low pressure system (top) and a high pressure system
(bottom) revealed by permanganate crystals on the bottom of a rotating tank. The
black dots are floating on the free surface and mark out circular trajectories around
the center of the tank directed anticlockwise (top) and clockwise (bottom).
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Figure 7.24: Flow spiralling in to a low pressure region (left) and out of a high
pressure region (right) in a bottom Ekman layer. In both cases the ageostrophic
flow is directed from high pressure to low pressure i.e. down the pressure gradient.

Then the momentum equations, Eq.(7.25), written out in component from
along and across the isobars, become:

−fv = −ku
δ

(7.29)

fu+
1

ρ

∂p

∂y
= −kv

δ

Note that v is entirely ageostrophic, being the component directed across the
isobars. But u has both geostrophic and ageostrophic components.
Solving Eq.(7.29) gives:

u = − 1³
1 + k2

f2δ2

´ 1
ρf

∂p

∂y
;
v

u
=

k

fδ
(7.30)

Note that the wind speed is less than its geostrophic value and if u > 0, then
v > 0 and visa versa; v is directed down the pressure gradient, from high to
low pressure, just as in the laboratory experiment and in Fig.7.24.
In typical meteorological conditions, δ ∼ 1 km, k is between (1 −→ 1.5)×

10−2ms−1 and k
fδ
∼ 0.1. So the wind speed is only slightly less than

geostrophic, but the wind blows across the isobars at an angle of some 6
to 12◦. The cross-isobaric flow is strong over land (where k is large) where
the friction layer is shallow (δ small) and at low latitudes (f small). Over



238 CHAPTER 7. BALANCED FLOW

Figure 7.25: Surface pressure field and wind at the surface at 12GMT on June
21st, 2003, at the same time as the upper level flow shown in Fig.7.4. The contour
interval is 4mbar. One full quiver represents a wind of 10ms−1; one half quiver a
wind of 5ms−1. The thick black lines marks the position of the meridional section
shown in Fig.7.21 at 80◦W.
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the ocean, where k is small, the atmospheric flow is typically much closer to
its geostrophic value than over land.
Ekman developed a theory of the boundary layer in which he set F = µ∂2u

∂z2

in Eq.(7.25) where µ was a constant eddy viscosity. He obtained what are
now known as ‘Ekman spirals’ in which the current spirals from its most
geostrophic to its most ageostrophic value (as will be seen in Section 10.1
and Fig.10.5). But such details depend on the precise nature of F , which in
general is not known. Qualitatively, the most striking and important feature
of the Ekman layer solution is that the wind in the boundary layer has a
component directed toward lower pressure; this feature is independent of the
details of the turbulent boundary layer.

Vertical motion induced by Ekman layers

Unlike geostrophic flow, ageostrophic flow is not horizontally non-divergent;
on the contrary, its divergence drives vertical motion because, in pressure
coordinates, Eq.(6.12) can be written (if f is constant, so that geostrophic
flow is horizontally non-divergent):

∇p · uag +
∂ω

∂p
= 0

This has implications for the behavior of weather systems. Fig.7.26 shows
schematics of a cyclone (low pressure system) and an anticyclone (high pres-
sure system). In the free atmosphere, where the flow is geostrophic, the
wind just blows around the system, cyclonically around the low and anticy-
clonically around the high. Near the surface in the Ekman layer, however,
the wind deviates toward low pressure, inward in the low, outward from the
high. Because the horizontal flow is convergent into the low, mass continuity
demands a compensating vertical outflow. This Ekman pumping produces
ascent – and, in consequence, cooling, clouds and possibly rain – in low
pressure systems. In the high, the divergence of the Ekman layer flow de-
mands subsidence (through Ekman suction): high pressure systems tend to
be associated with low precipitation and clear skies.

7.4.3 Planetary-scale ageostrophic flow

Frictional processes also play a central role in the atmospheric boundary layer
on planetary scales. Fig.7.27 shows the annual average surface pressure field
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Figure 7.26: Schematic diagram showing the direction of the frictionally-induced
ageostrophic flow in the Ekman layer induced by low pressure and high pressure
systems. There is flow in to the low inducing rising motion (the dotted arrow)
and flow out of a high inducing sinking motion.

in the atmosphere, ps. We note the belt of high pressure in the subtropics
(latitudes ±30◦) of both hemispheres, more or less continuous in the southern
hemisphere, confined in the main to the ocean basins in the northern hemi-
sphere. Pressure is relatively low at the surface in the tropics and at high
latitudes (±60◦), particularly in the southern hemisphere. These features are
readily seen in the zonal-average ps shown in the top panel of Fig.7.28.
To a first approximation, the surface wind is in geostrophic balance with

the pressure field. Accordingly (see the top and middle panels of Fig.7.28)
since ∂ps

∂y
< 0 in the latitudinal belt between 30◦ and 60◦N, then fromEq.(7.4),

us > 0 and we observe westerly winds there; between 0◦ and 30◦N , ps in-
creases, ∂ps

∂y
> 0 and we find easterlies, us < 0 – the trade winds. A similar

pattern is seen in the southern hemisphere (remember f < 0 here); note the
particularly strong surface westerlies around 50◦S associated with the very
low pressure observed around Antarctica in Fig.7.27 and 7.28 (top panel).
Because of the presence of friction in the atmospheric boundary layer,

the surface wind also shows a significant ageostrophic component directed
from high pressure to low pressure. This is evident in the bottom panel of
Fig.7.28 which shows the zonal average of the meridional component of the
surface wind, vs. This panel shows the surface branch of the meridional flow
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Figure 7.27: The annual-mean surface pressure field in mbar with major centers
of high and low pressure marked. The contour interval 5mbar.

in Fig.5.21 (top panel). Thus in the zonal average we see vs, which is entirely
ageostrophic, feeding rising motion along the inter-tropical convergence zone
at the equator, and being supplied by sinking of fluid in to the subtropical
highs of each hemisphere around ±30◦, consistent with Fig.5.21.
We have now completed our discussion of balanced dynamics. Before

going on to apply these ideas to the general circulation of the atmosphere
and, in subsequent chapters, of the ocean, we summarize our key equations
in Table 7.1.

7.5 Problems

1. Define a streamfunction ψ for non-divergent, two-dimensional flow in
a vertical plane:

∂u

∂x
+

∂v

∂y
= 0

and interpret it physically.
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Figure 7.28: Anually and zonally averaged (top) sea level pressure in mbar,
(middle) zonal wind in ms−1, and (bottom) meridional wind in ms−1. The
horizontal arrows mark the sense of the meridional flow at the surface.
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(x, y, z) coordinates (x, y, z) coordinates (x, y, p) coordinates

∇ ≡
³

∂
∂x
, ∂
∂y
, ∂
∂z

´
∇ ≡

³
∂
∂x
, ∂
∂y
, ∂
∂z

´
∇p ≡

³
∂
∂x
, ∂
∂y
, ∂
∂p

´
general (incompressible – OCEAN) (comp. perfect gas – ATMOS)

Continuity
∂ρ
∂t
+∇ · (ρu) = 0 ∇ · u = 0 ∇p · u = 0

Hydrostatic balance
∂p
∂z
= −gρ ∂p

∂z
= −gρ ∂z

∂p
= − 1

gρ

Geostrophic balance
fu = 1

ρ
bz ×∇p fu = 1

ρref
bz ×∇p fu = gbzp ×∇pz

Thermal wind balance
f ∂u
∂z
= − g

ρref
bz ×∇σ f ∂u

∂p
= −R

p
bzp ×∇T

Table 7.1: Summary of key equations. Note that (x, y, p) is not a right-
handed coordinate system. So while bz is a unit vector point toward increasing
z, and therefore upward, bzp is a unit vector point toward decreasing p – and
therefore also upward.
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Show that the instantaneous particle paths (streamlines) are defined by
ψ = const, and hence in steady flow the contours ψ = const are particle
trajectories. When are trajectories and streamlines not coincident?

2. What is the pressure gradient required to maintain a geostrophic wind
at a speed of v = 10ms−1 at 45◦N? In the absence of a pressure
gradient show that air parcels flow around circles in an anticyclonic
sense of radius v

f
.

3. Draw schematic diagrams showing the flow, and the corresponding bal-
ance of forces, around centers of low and high pressure in the midlati-
tude southern hemisphere. Do this for:

(a) the geostrophic flow (neglecting friction), and

(b) the subgeostrophic flow in the near-surface boundary layer.

4. Consider a low pressure system centered on 45◦S, whose sea level pres-
sure field is described by

p = 1000hPa −∆p e−r
2/R2 ,

where r is the radial distance from the center. Determine the struc-
ture of the geostrophic wind around this system; find the maximum
geostrophic wind, and the radius at which it is located, if ∆p = 20hPa,
and R = 500km. [Assume constant Coriolis parameter, appropriate to
latitude 45◦S, across the system.]

5. Write down an equation for the balance of radial forces on a parcel of
fluid moving along a horizontal circular path of radius r at constant
speed v (taken positive if the flow is in the same sense of rotation as
the earth).

Solve for v as a function of r and the radial pressure gradient and hence
show that:

(a) if v > 0, the wind speed is less than its geostrophic value,

(b) if |v| << fr then the flow approaches its geostrophic value and

(c) there is a limiting pressure gradient for the balanced motion when
v > −1

2
fr.
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Comment on the asymmetry between clockwise and anticlockwise vor-
tices.

6. (i) A typical hurricane at, say, 30◦ latitude may have low-level winds
of 50m s−1at a radius of 50 km from its center: do you expect this flow
to be geostrophic?

(ii) Two weather stations near 45◦N are 400 km apart, one exactly to
the northeast of the other. At both locations, the 500mbar wind is
exactly southerly at 30m s−1. At the north-eastern station, the height
of the 500mbar surface is 5510m; what is the height of this surface at
the other station?

What vertical displacement would produce the same pressure difference
between the two stations? Comment on your answer. You may take
ρs = 1.2 kgm

−3.

7. Write down an expression for the centrifugal acceleration of a ring of
air moving uniformly along a line of latitude with speed u relative to
the earth, which itself is rotating with angular speed Ω. Interpret the
terms in the expression physically.

By hypothesizing that the relative centrifugal acceleration resolved par-
allel to the earth’s surface is balanced by a meridional pressure gradient,
deduce the geostrophic relationship

fu+
1

ρ

∂p

∂y
= 0

(in our usual notation and where dy = adϕ).

If the gas is perfect and in hydrostatic equilibrium, derive the thermal
wind equation.

8. The vertical average (with respect to log pressure) of atmospheric tem-
perature below the 200mbar pressure surface is about 265K at the
equator and 235K at the winter pole. Calculate the equator-to-winter-
pole height difference on the 200mbar pressure surface, assuming sur-
face pressure is 1000mbar everywhere. Assuming that this pressure
surface slopes uniformly between 30◦ and 60◦ latitude and is flat else-
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where, use the geostrophic wind relationship (zonal component) in pres-
sure coordinates,

u = −g

f

∂z

∂y

to calculate the mean eastward geostrophic wind on the 200mbar sur-
face at 45◦ latitude in the winter hemisphere. Here f = 2Ω sinϕ is the
Coriolis parameter, g is the acceleration due to gravity, z is the height
of a pressure surface and dy = a×dϕ where a is the radius of the earth
is a northward pointing coordinate.

9. From the pressure coordinate thermal wind relationship, Eq.(7.24), and
approximating

∂u

∂p
' ∂u/∂z

∂p/∂z
,

show that, in geometric height coordinates,

f
∂u

∂z
' − g

T

∂T

∂y
.

The winter polar stratosphere is dominated by the “polar vortex,” a
strong westerly circulation at about 60◦ latitude around the cold pole,
as depicted schematically in Fig.7.29. (This circulation is the subject
of considerable interest, as it is within the polar vortices–especially
that over Antarctica in southern winter and spring–that most ozone
depletion is taking place.)
Assuming that the temperature at the pole is (at all heights) 50K
colder at 80◦ latitude than at 40◦ latitude (and that it varies uniformly
in between), and that the westerly wind speed at 100mbar pressure
and 60◦ latitude is 10m s−1, use the thermal wind relation to estimate
the wind speed at 1mbar pressure and 60◦ latitude.

10. Starting from Eq.(7.24), show that the thermal wind equation can be
written in terms of potential temperature thus:µ

∂ug
∂p

,
∂vg
∂p

¶
=
1

ρθ

Ãµ
∂θ

∂y

¶
p

,−
µ
∂θ

∂x

¶
p

!
.

11. Fig.7.30 shows, schematically, the surface pressure contours (solid) and
mean 1000mbar − 500mbar temperature contours (dashed), in the
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Figure 7.29: A schematic of the winter polar stratosphere dominated by the “polar
vortex,” a strong westerly circulation at ∼ 60◦ around the cold pole.

Figure 7.30: A schematic of surface pressure contours (solid) and mean
1000mbar−500mbar temperature contours (dashed), in the vicinity of a typical
northern hemisphere depression (storm).
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vicinity of a typical northern hemisphere depression (storm). “L” indi-
cates the low pressure center. Sketch the directions of the wind near the
surface, and on the 500mbar pressure surface. (Assume that the wind
at 500mbar is significantly larger than at the surface.) If the movement
of the whole system is controlled by the 500mbar wind (i.e., it simply
gets blown downstream by the 500mbar wind), how do you expect the
storm to move? [Use density of air at 1000mbar = 1.2 kg m−3; rotation
rate of Earth = 7.27× 10−5 s−1; gas constant for air = 287 J kg−1.]


